If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35(t)=-16t^2+35
We move all terms to the left:
35(t)-(-16t^2+35)=0
We get rid of parentheses
16t^2+35t-35=0
a = 16; b = 35; c = -35;
Δ = b2-4ac
Δ = 352-4·16·(-35)
Δ = 3465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3465}=\sqrt{9*385}=\sqrt{9}*\sqrt{385}=3\sqrt{385}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-3\sqrt{385}}{2*16}=\frac{-35-3\sqrt{385}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+3\sqrt{385}}{2*16}=\frac{-35+3\sqrt{385}}{32} $
| .2(.7x−5)+.02=1.4(x−1.6) | | 5p+2p=7p | | 18x+7=20x-7 | | 2(5y-1)+4y=4y-2(-4y+3)+20 | | -5x+9=10x+15-12x | | -8+4x-x=7 | | c/3=8.97 | | c*3=8.97 | | 3n=6×14 | | 7x-42=-63 | | c+3=8.97 | | c-3=8.97 | | x/7=8.1 | | x-13=101 | | x+13=101 | | x-31/7=6 | | p+13=21 | | p=13=21 | | 4.9t^2-27t=0 | | 16x^2-44=0 | | 1/2c+17=32 | | .5c=15 | | -x-4=x/3+4 | | -(3)/(8)(x-24)+x=19 | | 3=2y^2+5y | | -3=-6x-3 | | (x+3)²=576 | | 114x=3/4 | | 114x=1/4 | | 10(x)-5=28 | | 1/4x=114 | | 3/4x=114 |